An arithmetic Riemann-Roch theorem in higher degrees

نویسندگان

  • Henri Gillet
  • Damian Rössler
چکیده

We prove an analogue in Arakelov geometry of the Grothendieck-RiemannRoch theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J an 2 00 7 GRAPHS , ARITHMETIC SURFACES , AND THE RIEMANN - ROCH THEOREM

We use the theory of arithmetic surfaces to show that the Riemann-Roch theorem for Q-graphs is a direct consequence of the usual Riemann-Roch theorem for curves in algebraic geometry.

متن کامل

Relative Bott-Chern Secondary Characteristic Classes

In this paper, we introduce six axioms for relative Bott-Chern secondary characteristic classes and prove the uniqueness and existence theorem for them. Such a work provides us a natural way to understand and hence to prove the arithmetic Grothendieck-Riemann-Roch theorem.

متن کامل

Riemann-roch for Equivariant K-theory

The goal of this paper is to prove the equivariant version of Bloch’s Riemann-Roch isomorphism between the higher algebraic K-theory and the higher Chow groups of smooth varieties. We show that for a linear algebraic group G acting on a smooth variety X , although there is no Chern character map from the equivariant K-groups to equivariant higher Chow groups, there is indeed such a map K i (X)⊗...

متن کامل

Riemann-roch for Deligne-mumford Stacks

We give a simple proof of the Riemann-Roch theorem for Deligne-Mumford stacks using the equivariant Riemann-Roch theorem and the localization theorem in equivariant K-theory, together with some basic commutative algebra of Artin local rings.

متن کامل

Analytic torsion of Hirzebruch surfaces

Using different forms of the arithmetic Riemann-Roch theorem and the computations of Bott-Chern secondary classes, we compute the analytic torsion and the height of Hirzebruch surfaces. 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007